3.1144 \(\int \frac{a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=256 \[ \frac{2 \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{d \sqrt{\cos (c+d x)}}+\frac{4 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d}-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d} \]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]]
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (4*
Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d + (2*Sqrt[a + b*Cos[c
 + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.495007, antiderivative size = 256, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3061, 2998, 2816, 2994} \[ \frac{2 \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{d \sqrt{\cos (c+d x)}}+\frac{4 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d}-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x] + 2*b*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]]
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (4*
Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d + (2*Sqrt[a + b*Cos[c
 + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Simp[(C*Cos[e + f*x]*Sqrt[c + d*Sin[e
+ f*x]])/(d*f*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[1/(2*d), Int[(1*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d
*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + f*x]^2, x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c
+ d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
&& NeQ[c^2 - d^2, 0]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx &=\frac{2 \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{\int \frac{-2 a b+2 a b \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{2 b}\\ &=\frac{2 \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-a \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx+(2 a) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx\\ &=-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{a d}+\frac{4 \sqrt{a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}+\frac{2 \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 4.75302, size = 160, normalized size = 0.62 \[ \frac{\sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{a+b \cos (c+d x)} \left (\frac{2 E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )}{\sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}}}+\frac{\left (\sin \left (\frac{3}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \sec \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}}}\right )}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x] + 2*b*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[a + b*Cos[c + d*x]]*((2*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a +
b)/(a + b)])/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (Sec[(c + d*x)/2]*(-Sin[(c + d*x)/2] +
Sin[(3*(c + d*x))/2]))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]))/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.153, size = 919, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2/d*(sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(
a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a+2*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+
c)))^(3/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c))
)^(1/2)*a+sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^
(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a+sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a
+b))^(1/2))*b-sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(
-(a-b)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a+a*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*Ell
ipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*
x+c)+sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*E
llipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a+sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2
))*b-sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b
))^(1/2))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a+cos(d*x+c)^4*b+cos(d*x+c)^3*a-cos(d*x+c)^3*b-cos(d
*x+c)^2*a)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)/(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a\right )} \sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b*cos(d*x + c)
^2 + a*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a \cos{\left (c + d x \right )} + a + 2 b \cos ^{2}{\left (c + d x \right )}}{\sqrt{a + b \cos{\left (c + d x \right )}} \sqrt{\cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((a*cos(c + d*x) + a + 2*b*cos(c + d*x)**2)/(sqrt(a + b*cos(c + d*x))*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)/(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)